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Ondes de Mach

Onde acoustique se propage à la vitesse du son a dans un référentiel fixe par rapport au fluide
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ondes de perturbation de 
pression de vitesse a1uM

a
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u : vitesse du point P

Ondes de Mach



Flavio Noca Chap 4 – Ecoulements Isentropiques

Ondes de Mach

Configuration des ondes à
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Ondes de Mach
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Ondes de Mach
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Ondes de Mach
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Une onde de Mach, une ligne de Mach, ou cône de Mach 
 = onde acoustique (isentropique)
 = onde de pression d’intensité          infinitésimale par rapport à 

 Exemple: l’oreille humaine est sensible à des différences de pressions 
acoustiques bien inférieure à la pression atmosphérique 
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Ondes de Mach:
Source fixe dans un écoulement

Source au 
repos

Ecoulement
supersonique
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Ondes de Mach
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Mach, Ernst, P. Salcher. 
"Photographische Fixierung der 
durch Projectile in die
Luft eingeleiteten Vorgänge." 
Sitzungsberichte der 
Kaiserlichen Akademie der
Wissenschaften: Mathematisch-
Naturwissenschaftliche Classe 
95, (1887): 764–781.

Mach 1887
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ATTENTION: le processus de condensation n’est pas adiabatique, et donc non parfaitement 
isentropique (une légère compression se produit également), donc le front de condensation 
n’est pas rigoureusement une onde de Mach.

Ondes de Mach
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Ondes de Mach
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Ondes de Mach
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Ondes de Mach vs Ondes de Choc

Ondes de
pression intense 

= 
ondes de choc

Onde de 
Mach

Une onde de Mach est 
une onde de pression 

d’intensité 
infinitésimale
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Onde de choc droite

Onde de choc oblique

Onde de Mach
= onde acoustique

Ondes de Mach
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Ondes de Mach

Onde de choc

Scotch générant
les ondes de Mach

Ondes de Mach
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Onde de Mach

Onde de choc

Ondes de Mach
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Ondes de Mach

Onde de Mach

Onde de choc
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Ondes de Mach

https://boomsupersonic.com/



Flavio Noca Chap 4 – Ecoulements Isentropiques

Ondes de Mach
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Equations de conservation

 Ecoulements Isentropiques Permanents

• Fluide dénué de viscosité

• Pas de force volumique 

• Pas de rayonnement

• Pas de transfert de chaleur

0f
0=r

0 q
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Equation de conservation de la quantité de mouvement, formulation d’Euler

 Dans le cas permanent, la relation précédente devient

 Le long d’une ligne de courant, on obtient finalement:

Conservation de la quantité de mouvement
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Equation de conservation de l’énergie

 Dans le cas permanent, la relation précédente devient

 Enthalpie d’arrêt (ou totale si la gravité est négligée) 
constante le long d’une ligne de courant
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
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0 2
uh h const  

Conservation d’énergie
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Les deux équations sont redondantes

 Or, avec la relation de Gibbs
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Grandeurs totales

 Définition

• Un point d’arrêt d’un écoulement PERMANENT est un 
point où la vitesse est nulle

• Une grandeur d’arrêt est une grandeur définie en un 
point d’arrêt d’un écoulement PERMANENT

 Notation

 Propriété

Grandeurs de réservoir, d’arrêt, de stagnation
     = grandeurs totales si la gravité est négligée

0 0 0 0 0, , , ,h T p s 

0 0u 
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Grandeurs de réservoir
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 Le long d’une ligne de courant, l’équation d’énergie s’écrit:

 Comme l’entropie est une constante pour un écoulement isentrope

Détermination des constantes d’intégration
à partir des grandeurs d’arrêt

2

02
uh h+ =

0 .s s const 

La température d’arrêt       est donc constante pour un écoulement isentrope permanent

   
2

0 0 0 0, ,
2

uh T s h T s 

0T

l’enthalpie n’est plus fonction que d’une seule variable d’état (la 
température par exemple): 

   
   

0 0 0 0
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p T s p T s

T s T s 





 Comme l’entropie est une constante pour un écoulement isentrope

La pression d’arrêt        et la densité d’arrêt     
sont donc constantes

pour un écoulement isentrope permanent

0p 0
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 On vient de voir que, le long d’une ligne de courant, l’équation d’énergie s’écrit:

 Pour un gaz parfait (avec :                        ) on a (Chap2): 

Gaz parfaits

2

02
uh h 

.ph c T const 

2

02p p
uc T c T 

Comme tous les termes sont positifs, à partir d’un réservoir où le gaz est en 
agitation thermique (         ), cette énergie d’agitation est convertie en énergie 
cinétique de translation (        ) tandis que l’énergie d’agitation thermique du gaz 
diminue (         ). 

0pc T
21

2 u
pc T

.pc const
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Grandeurs soniques

 Définition

 Notation

• Un point sonique d’un écoulement est un point où la 
vitesse est égale  à la célérité du son

 Propriété

• Une grandeur sonique est une grandeur définie en un point 
aux conditions soniques

Grandeurs soniques

* * * * *h T p s 

* *u a
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  On a vu que l’équation de conservation de l’énergie peut s’écrire:

 En divisant par la température statique T et avec la relation thermodynamique, on 
obtient:

Gaz parfaits

 Soit encore
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  En utilisant les relations isentropiques et l’équation d’état

 On obtient à partir de l’expression ci-contre, les relations:
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Illustration des relations isentropes

Gaz parfaits
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Gaz parfaits
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  En un point sonique de l’écoulement, on a par définition

  Les relations pour les grandeurs soniques deviennent:
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 Si on considère deux points d’une ligne de courant l’équation d’énergie s’écrit

 Avec la relation thermodynamique, la relation précédente devient:

 Le long d’une ligne de courant on a:
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Gaz parfaits
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 En considérant la différentielle de l’équation précédente

 Avec la définition du nombre de Mach

22 2
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 En remplaçant
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Gaz parfaits
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 Comme  g > 1, un accroissement du nombre de Mach implique un accroissement de la 
vitesse de l’écoulement le long d’une ligne de courant isentrope (indépendamment de la 
variation de température). 
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Gaz parfaits
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 En un point sonique, l’équation de conservation de l’énergie s’écrit:

 Ce qui peut s’écrire sous la forme:

u u a  

 Le long d’une ligne de courant, on a donc
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Détermination du type d’écoulement en fonction des grandeurs soniques:

 La relation précédente peut s’écrire encore:

Si v > a* 

 

2 2
21
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M >1 Ecoulement supersonique

Si v < a* M <1 Ecoulement subsonique

v > a 

v < a 

a* > a 

a* < a 

Gaz parfaits
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Nombre de Mach associé aux grandeurs soniques

 L’équation de la conservation de l’énergie exprimée en fonction des grandeurs soniques 
et divisée par u2 devient:
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En faisant apparaître les nombre de Mach M et M*
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Gaz parfaits
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Détente dans le vide (p = 0)

 Si p = 0, alors T = 0 et a = 0

Gaz parfaits
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Quand un écoulement est-il compressible?

 En intégrant                                   entre un réservoir (vitesse nulle) et un état proche:1udu dp

2
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1
2

p u 

2
2

2
0

1 1
2 2

u M
a




 

Le nombre de Mach représente une mesure des variations relatives de masse 
volumique, soit l’erreur qu’on commet en considérant une masse volumique 
constante. 
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      
 Avec:                         , on a pour un écoulement isentrope:

}
2p a 

 Ainsi:
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  Equation de Bernoulli généralisée pour les 
écoulements compressibles de gaz parfaits:
 

2
0

01 2 1
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   
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 

  Développement de la relation isentropique 
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Quand un écoulement est-il compressible?
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 Ainsi  

  Développement de la relation isentropique 
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 Donnant finalement
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Quand un écoulement est-il compressible?
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