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Ondes de Mach

Uu ondes de perturbation de
M = — <K< 1 pression de vitesse @
a /

U : vitesse du point P
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Ondes de Mach

u
M=—<1 3aht
a 2a/\t
a/\t

Configuration des ondes a

t — BAt Déplacement subsonique
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Ondes de Mach
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M — Ondes de Mach

Coéne 2alt
de Mach q
EAM I . alAt 2aAt
silence sSin U = = =...
UAt 2UAt
Angle de Mach p
Zone
d'influence Lf
: a 1
SIN [l =— = —
u M

Z‘ — 3AZ‘ Déplacement supersonique



Ondes de Mach
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Ondes de Mach

Une onde de Mach, une lighe de Mach, ou cone de Mach
» =onde acoustique (isentropique)
» =onde de pression d'intensité Ap infinitésimale par rapport a pa2

1

pa’

A A i 1(d
WP ody — 2L o=

0 s 0 ,OCZ plOp).

» Exemple: 'oreille humaine est sensible a des différences de pressions
acoustiques bien inférieure a la pression atmosphérique

pa’~p.  ~100'000 Pa

2x10™ Pa 20 Pa
< Al70rellle <
0dB 120 dB
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Ondes de Mach:
Source fixe dans un écoulement E PFL

Ecoulement
supersonique

Source au
repos
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Ondes de Mach EPFL
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Ondes de Mach EPFL
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Ondes de Mach EPFL
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Ondes de Mach

Mach Mumber

.'1.4

0.7

- 0.3
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Mach, Ernst, P. Salcher.
"Photographische Fixierung der
durch Projectile in die

Luft eingeleiteten Vorgange."
Sitzungsberichte der
Kaiserlichen Akademie der
Wissenschaften: Mathematisch-
Naturwissenschaftliche Classe
95, (1887): 764—781.
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Mach 1887 =PrL

Um zum Verstiindniss der Erscheinungen zu gelangen,
denken wir ung zuniichst einen unendlich diinnen Stab « b, Fig. 2,
von betriichtlicher Linge, welcher nach der Riechtung b « mit einer

Fig. 2.

die Schallgesehwindigkeit libersteigenden Gesehwindigkeit in der
Luft bewegt wird. Derselbe wird bei « unansgesetzt unendlich
kleine Verdichtungen erzeugen, welehe sich als Schallwellen
ausbreiten. Die betreffenden Hu y gh e ns’schen Elementarwellen
werden als Enveloppe einen Kegel bilden, dessen Scehnitt mit der
Zeichnungsebene dureh m a » dargestellt ist. Bezeichnen wir den
Winkel m a b mit 2, die Schallgeschwindigkeit mit v, die Pro-
gressivgeschwindigkeit (Projectilgesehwindigkeit des Stabes mit

. u .
», 80 ]St—-}- — B e
.




Ondes de Mach

2 =120° > M = —— —1.15
sIn [

ATTENTION: le processus de condensation n’est pas adiabatique, et donc non parfaitement
isentropique (une légere compression se produit également), donc le front de condensation
n‘est pas rigoureusement une onde de Mach.
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Ondes de Mach
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Ondes de Mach vs Ondes de Choc

Ondes d Onde de - Une onde de Mach est
e Mach une onde de pression

ression intense | Parabola / . o,
P / g d’intensité

- infinitésimale
- ondes de choc

Détente
(isentrope)
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Ondes de Mach

Onde de choc droite

M=%>1 4”—( —

asiu <u Onde de Mach
u = onde acoustique
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Ondes de Mach

Onde de choc

Scotch générant
les ondes de Mach

Ondes de Mach
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Ondes de Mach

Onde de choc

> Onde de Mach
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Ondes de Mach

Onde de choc

_— Onde de Mach
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de Mach
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Ondes de Mach
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Equations de conservation

» Ecoulements Isentropiques Permanents

* Fluide dénué de viscosité
* Pas de force volumique f=0

* Pas de rayonnement r=>0

* Pas de transfert de chaleur V- q= 0
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Conservation de la quantité de mouvement E PFL

Equation de conservation de la quantité de mouvement, formulation d’Euler

bl v
th p

» Dans le cas permanent, la relation précédente devient

2
u

u-Vu:V[7 —uxqu:—le

0

» Le long d’une ligne de courant, on obtient finalement:

2
d,
u——l—f—p:const
2 p
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Conservation d’énergie

Equation de conservation de |'énergie
Dh, 10p
Dt p Ot

» Dans le cas permanent, la relation précédente devient

u-Vi, =0

» Enthalpie d’arrét (ou totale si la gravité est négligée)
constante le long d’une ligne de courant

2
h, = h—l—u?:const
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Conservation

Les deux équations sont redondantes

2
1

u——l—fd—p: const - —dp +udu =0

P p

2

h+u7:const—> dhHudu =0

» Or, avec la relation de Gibbs

dh :}1&4— vdp dh = ! dp
P
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Grandeurs totales

Grandeurs de réservoir, d'arrét, de stagnation i = I
= grandeurs totales si la gravité est négligée p=p,
P = Py

u=~0

— >
P =P /-T,pap,V — P a\_/
u=0 ‘ =%M/

» Définition
» Notation
e Un point d’arrét d’'un écoulement PERMANENT est un
point ou la vitesse est nulle Ry, Ty Pos Sos Py
* Une grandeur d’arrét est une grandeur définie en un » Propriété
point d’arrét d’un écoulement PERMANENT U =0
.=
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Grandeurs de réservoir
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Détermination des constantes d’intégration

a partir des grandeurs d’arrét

» Le long d’une ligne de courant, I'’équation d’énergie s’écrit:

2
u

h+7=h0

» Comme 'entropie est une constante pour un écoulement isentrope

s =8, = const.

I'enthalpie n’est plus fonction que d’une seule variable d’état (la

température par exemple):

2
u

h(T,SO>—|—7: ho (T, 8,)

La température d’arrét To est donc constante pour un écoulement isentrope permanent

» Comme 'entropie est une constante pour un écoulement isentrope

La pression d’arrét p, et la densité d’arrét p
T.,s.)— 1.s 0 0
p( ’ 0> po( 02 0) sont donc constantes
p(T,sO) — 0, (ToaSo> pour un écoulement isentrope permanent
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Gaz parfaits

» On vient de voir que, le long d’une ligne de courant, I'’équation d’énergie s’écrit:

2

u
ey Th
» Pour un gaz parfait (avec : c, = const. ) on a (Chap2): h = cpT -+ const.

2

u
cpT—|—7: c,1

Comme tous les termes sont positifs, a partir d’'un réservoir ou le gaz est en
agitation thermique (CpTo)' cette énergie d’agitation est convertie en énergie
cinétique de translation (%uz) tandis que I'énergie d’agitation thermique du gaz
diminue (CpT).
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Grandeurs soniques

Grandeurs soniques
» Définition
* Un point sonique d’un écoulement est un point ou Ia

vitesse est égale a la célérité du son

* Une grandeur sonique est une grandeur définie en un point
aux conditions soniques

> Notation h* T:k P« S« Px

» Propriété M* — a*
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Gaz parfaits

» On avu que I"'égquation de conservation de I'énergie peut s’écrire:

2
u
c,I —1—7 =c,1, = const

» En divisant par la température statique T et avec la relation thermodynamique, on
obtient:

_0:1_|_ u
T 2cpT
» Soit encore :
! r
ECP: 1
T —1(u ? —1 5 i
_0:1_|_/y__ — 1 LMz ia‘z:fer
T a g y
M=
! a
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Gaz parfaits

> En utilisant les relations isentropiques et ’équation d’état

9! - = const-p”
P _ &] :[E]M P
p \p r p=prT
> On obtient a partir de I’expression ci-contre, les relations: T, - fy—le
T 2
0 |
—1 -1
Do+ 21—
p 2
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Gaz parfaits

Illustration des relations isentropes

uuuuuu

uuuuuu

uuuu

uuuuuu

Po/p

—r—t -

N%-Onhre de Mach 12

T _
~0 1+L1M2
T 2

Po/P

mmmmmmmmmmm
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Gaz parfaits

1.0 [=
L .\"\\
0.8 i x \\ _
A\
0.6 I p, \\, \
: .xx
04 3 '._x\k ﬁ
| \ 0
02} " o N
- R Tomaia
1 2 3 4 5
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Gaz parfaits

Mach Number

"1.4

Dansity Temperature Pregiss
" 1.9 376 . 108149 i
n \
1.7 - 349 - 73399
- 10a 323 | 38650
F1.1 - 297 - 3900 i L
I- 0.9 I 2n - -30849
(kg mA-3] K Pal
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Isentropic Flow Tables

TABLE B.1 Isentropic Flow Table (y = 1.4)
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- a

N AADSD

M- T plp, plp, AJA* M TIE plp, plo,  AlA* |
00 10000 10000 ~ 1.0000 oo 094 08498 05658 06658  1.0031
8.82 00999 09997 09998 289421 | | 096 08444 05532  0.6551 10014
004 09997 09989 09992  14.4815 008 08389 05407  0.6445  1.0003
006 09993 09975  0.9982  9.6659 100 08333 05283 06339  1.0000
008 09987 09955 09968  7.2616 100 08278 05160  0.6234  1.0003
010 09980 09930 09950  5.8218 104 0822 05039 06129 10013
012 09971 09900 09928  4.8643 106 08165 04919 06024  1.0029
014 09961 09864 09903  4.1824 108 08108 04800 05920  1.0051
016 09949 09823 09873  3.6727 110 08052 04684 05817  1.0079
018 09936 09776 09840 32779 112 07994 04568 05714  1.0113
020 09921 09725 09803  2.9635 114 07937 04455 05612  1.0153
022 09904 09668 09762  2.7076 116 07879 04343 05511  1.0198

N A1

1 N AD




Gaz parfaits

» En un point sonique de |'écoulement, on a par définition M =1

» Les relations pour les grandeurs soniques deviennent: 52: :
:Z) 1_|_L_1M2
| 2
]-:k 2 iﬂz ! 1
- K [1+H ]
I, y+l1 | 2
T. P !
| v
! = AN F o [1 MLy VE ]”1
1 RS ' 2
P | 2 | sl N\ L0
_ : ..._:H\ \\
Po Y +1 osf | Ix&
[ *\ <
osl & "%x
ll [ p() ‘_\\KH %H“‘“-a___q__
p * 2 i 2 % H"“--.H o
po ry_l_l o 1 Eiy .;: B ]';-.—.—.T.:I.—:ﬂzjl_
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Gaz parfaits

» Si on considere deux points d’une ligne de courant I'équation d’énergie s’écrit

2 2 : 5
u u :
h1_|__1:}12_|__2 : h0:h+V—:const
2 2 : h T2
=C
» Avec la relation thermodynamique, la relation précédente devient: | p},r
T
2 2 :
y—1 2 ~—-1 2
v, =0
» Avec la relation pour la vitesse du son:
M =—
a’ u a; u
1 + 1 — 2 + 2
vy—1 2 ~—-1 2

2

2 2 2 a ’y—l 5

+—= = const —=|1+—M
vy—1 2 ~-1 a,
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Gaz parfaits

» En considérant la différentielle de I'équation précédente

2 2 2
2
a L¥ a, ada_|_udu:0 2 da

v—1 2 -1 v—1 v—1a u

A\
<
)
|
S

v

» Avec la définition du nombre de Mach

[V LN dM _ du da
a M u a
» En remplacant
du 1 dM

» Comme g > 1, un accroissement du nombre de Mach implique un accroissement de |a
vitesse de |’écoulement le long d’une ligne de courant isentrope (indépendamment de la
variation de température).
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Gaz parfaits

Mach Number Velocity
B 1
- 1.0 - 345
- 0.7 - 230
L 0.3 115
[m s%-1]
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Gaz parfaits

» En un point sonique, I’équation de conservation de I'énergie s’écrit:

2 2 2 2

+—=— —I—a*:const i
vy—1 2 ~—-1 2 . u=u =a,

» Ce qui peut s’écrire sous la forme:

a-  u +1
+_7

y—1 2 2(y-1)

2
a, = const
» Le long d’une ligne de courant, on a donc

a u- v+l e a;
y—1 2 2(y=-1) " ~-1

= const
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Gaz parfaits

Détermination du type d’écoulement en fonction des grandeurs soniques:

> La relation précédente peut s’écrire encore:

2 2 2 2
u —a. a.—a

2 v —1

Siv>a, &) a,>a |:> V>ad I:> M >1 Ecoulement supersonique
Siv<a, &> a,<a m==) v<a ) M <1 Ecoulement subsonique
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Gaz parfaits

Nombre de Mach associé aux grandeurs soniques M = —

*

» ['équation de la conservation de I'énergie exprimée en fonction des grandeurs soniques
et divisée par u? devient:

(a/u)2 _|_l: ’Y"‘l af é}/_zl+v72= a’ = const
y—1 2 2(y=1)u’ =

»En faisant apparaftre les nombre de Mach Met M,

2 (y+1)M? M? =
C24(y-1)M?

M =1 — M, =1
M <1 — M, <l
M >1 — M, _>1



Gaz parfaits

Détente dans le vide (p = 0)

2
P = P

u
cpT—|——:cpTO —

»Sip=0,alorsT=0eta=0

u=.2cT _u M? = ><7
p-0 M=—— 0 x 2—|—<7—1>M2 (7_1>
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Quand un écoulement est-il compressible? E PFL

» Enintégrant udu = —l/p dp entre un réservoir (vitesse nulle) et un état proche:
u |
f u'du'=—u’
0 2 6 1 )
po+op |1 Po+6p 1 po+ép 1 1 p~——pyu
-] A ~— | ——=dp'~— | —bp'=——bp 2"
Po P Po Py +0p Po Po Po

0
> Avec: q® = |2 , 0N a pour un écoulement isentrope: §p ~ a’6
ap p P

> Ainsi: S — V&

Le nombre de Mach représente une mesure des variations relatives de masse
volumique, soit I'erreur qu’on commet en considérant une masse volumique
constante.
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Quand un écoulement est-il compressible? E PFL

» Equation de Bernoulli généralisée pour les h :h+£:const
écoulements compressibles de gaz parfaits: "
h=c,T
S B ) IR s
— T
y=1p 2 ~v—1p, »
rT ==
P
» Développement de la relation isentropique
Po Dy Tt XD ey iﬂz[lﬂ—_lw]“
p 2 8 48 D
» Ou
VP 3,2 1 2= 4
—p="EM* | 1+-M>+=— M+ ..
Pom b= 4 24 ]
» Ou
N 4
2 1 ! a —_— -
2 2 vyplp 2 o=
| a
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> Ainsi

Quand un écoulement est-il compressible?

1

Po_pzzpu

» Développement de la relation isentropique

P

» Donnant finalement

Po — P — Pl

1

M4+...]

== M7+ LM
Po 2 8
Lot |1= a2 42221
2 4 24
M 0.1 0.2 0.3
Py— P
1 5 0.9975 0.9901 0.9781
5:00“

=PrL
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